Elevated Serum Levels of Resistin, Leptin, and Adiponectin are Associated with C-reactive Protein and also Other Clinical Conditions in Rheumatoid Arthritis

Takumi Yoshino, Natsuko Kusunoki, Nahoko Tanaka, Kaichi Kaneko, Yoshie Kusunoki, Hirahito Endo, Tomoko Hasunuma and Shinichi Kawai

Reprinted from Internal Medicine Vol. 50, Pages 269-275 February 2011

ORIGINAL ARTICLE

Elevated Serum Levels of Resistin, Leptin, and Adiponectin are Associated with C-reactive Protein and also Other **Clinical Conditions in Rheumatoid Arthritis**

Takumi Yoshino¹, Natsuko Kusunoki¹, Nahoko Tanaka¹, Kaichi Kaneko¹, Yoshie Kusunoki¹, Hirahito Endo¹, Tomoko Hasunuma^{1,2} and Shinichi Kawai¹

Abstract

Objective Body fat is an important source of hormones and cytokines (adipokines) that not only regulate the energy balance, but also regulate the inflammatory and immune responses. This study investigated the association of clinical conditions with serum levels of adipokines in patients with rheumatoid arthritis. Methods Serum levels of resistin, leptin, and adiponectin were measured by enzyme-linked immunosorbent assay in 141 patients (110 women) who fulfilled the 1987 revised criteria of the American Rheumatism Association for the diagnosis of rheumatoid arthritis and in 146 normal controls (124 women). Then the correlations between adipokine levels and clinical parameters were evaluated. **Results** The serum resistin level did not differ between the patients and controls. However, serum leptin levels were significantly higher in male and female rheumatoid arthritis patients than in the corresponding controls, while the serum adiponectin level was significantly higher in female patients than in female controls. Multivariate analysis revealed that predictors of an elevated resistin level were female sex and Creactive protein (CRP), while the leptin level was related to the body mass index and CRP. Predictors of an elevated adiponectin level were the use of prednisolone and CRP, however, CRP was negatively associated with adiponectin in patients with rheumatoid arthritis. Conclusion The serum levels of resistin and leptin were positively associated with CRP level in patients with rheumatoid arthritis, suggesting that these adipokines may act as pro-inflammatory cytokines in this disease. The serum adiponectin level was elevated in the patients, however, it was negatively associated with CRP level. In addition, the serum levels of resistin, leptin, and adiponectin were also associated with female sex, BMI and the use of prednisolone, respectively.

Key words: rheumatoid arthritis, resistin, leptin, adiponectin, C-reactive protein

(Intern Med 50: 269-275, 2011) (DOI: 10.2169/internalmedicine.50.4306)

Introduction

Rheumatoid arthritis (RA) is a chronic systemic autoim-Recent studies have demonstrated that cytokines secreted mune inflammatory disease that is characterized by symmetby adipocytes (adipokines) have an important physiological rical synovitis, progressive joint damage, pain, fatigue, and role. Adipokines, including resistin, leptin, and adiponectin, disability. Although the exact cause of this disease is still have been demonstrated to influence eating behavior and the unknown, investigation of its pathogenesis has confirmed a energy balance, and have also been noted as new mediators role for various pro-inflammatory cytokines, including tumor of the inflammatory process (4, 5). Recently, we reported

necrosis factor- α (TNF α), interleukin-1 (IL-1), and interleukin-6 (IL-6) (1-3). Accordingly, inhibition of these cytokines has become the new therapeutic strategy for RA.

¹Division of Rheumatology, Department of Internal Medicine (Omori), Toho University School of Medicine, Japan and ²Research Center for

Clinical Pharmacology, Kitasato University, Japan

Received for publication August 1, 2010; Accepted for publication November 24, 2010 Correspondence to Dr. Shinichi Kawai, skawai@med.toho-u.ac.jp

-	Sex	RA patients	Control subjects	p value
		(n=141)	(n=146)	1
Male : Female		31:110	22:124	
Age (years)	Μ	61.0 ± 12.7	45.6 ± 13.8	< 0.001
	F	59.0 ± 14.0	57.5 ± 16.6	0.456
Height (cm)	Μ	166.8 ± 6.1	170.0 ± 6.2	0.069
	F	154.4 ± 6.6	156.0 ± 6.0	0.091
Weight (kg)	М	64.7 ± 11.1	64.5 ± 9.9	0.952
	F	52.9 ± 9.3	52.8 ± 7.0	0.956
BMI (kg/m ²)	М	23.2 ± 3.2	22.3 ± 2.8	0.29
	F	22.2 ± 3.8	22.2 ± 3.0	0.932
Rheumatoid factor positive, %	Μ	80.6	_	-
	F	89.1	_	_
Duration of RA (years)	М	7.8 ± 8.6		-
	F	11.4 ± 8.9		
DAS28-ESR	М	3.4 ± 1.9	-	-
	F	3.8 ± 1.4	_	-
Stage of RA (I:II:III:IV)	М	12:5:6:8	_	1.12
	F	11:25:16:58		
CRP (mg/L)	Μ	10.4 ± 10.5	-	· · · · · · · · · · · · · · · · · · ·
	F	8.2 ± 14.4	· · · · · · · · · · · · · · · · · · ·	10 <u>1</u> 12813
ESR (mm/h)	Μ	23.7 ± 22.2	_	 employ
	F	33.6 ± 24.9		

Table 1. Demographic Profile of the Patients with Rheumatoid Arthritis and **Control Subjects**

Data are shown as the mean±SD; M, Male; F, Female; RA, rheumatoid arthritis; BMI, body mass index; DAS, disease activity score; ESR, erythrocyte sedimentation rate; CRP, C-reactive protein

Table 2. Current Medications in Patients with Rheumatoid Arthritis

	Mal (n=3			Female (n=110)			
n	%	dosage	n	%	dosage		
10	32.3	4.4±2.6	52	47.2	5.2±2.1		
17	54.8	8.0±2.6	67	60.9	8.0±2.3		
. 17	54.8	1.0±0.3	41	37.3	1.0±0.3		
11	35.5	132±64	19	17.3	192±42		
1	3.2	3	8	7.3	3.7 ± 0.8		
2	6.5	50	13	11.8	44 ± 11		
	10 17 17 11 1	(n=3 n % 10 32.3 17 54.8 17 54.8 11 35.5 1 3.2 2 6.5	$(n=31)$ $n \ \% \ dosage$ $10 \ 32.3 \ 4.4\pm 2.6$ $17 \ 54.8 \ 8.0\pm 2.6$ $17 \ 54.8 \ 1.0\pm 0.3$ $11 \ 35.5 \ 132\pm 64$ $1 \ 3.2 \ 3$ $2 \ 6.5 \ 50$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		

Data are shown as the mean±SD; n, number of samples; DMARDs, disease modifying anti-rheumatic drugs

that adiponectin stimulates the production of IL-8 (6) and prostaglandin $E_2(7)$ by rheumatoid synovial fibroblasts. These findings suggest that adipokines may contribute to healthy persons were also enrolled as controls. The demosynovial inflammation in RA.

In the present study, we measured the serum concentrations of 3 adipokines (resistin, leptin, and adiponectin) in Japanese patients with RA and in normal controls to further investigate the role of these molecules in the pathogenesis of this disease.

Methods

Subjects

One hundred and forty-one patients with RA diagnosed

according to 1987 revised criteria of the American Rheumatism Association (8) were enrolled in this study, and 146 graphic characteristics of the RA patients and the controls are shown separately for males and females in Table 1. Clinical features of the male and female RA patients are also shown in Table 1. The body mass index (BMI) was calculated as [body weight/height²] (kg/m²). Demographic characteristics did not differ between the RA group and the control group, except for the mean age of the males. Medications in the RA patients are shown in Table 2.

Disease activity score 28 (DAS28) was calculated with the following equation (9): DAS28 = $0.56 \times \sqrt{28}$ TJC + $0.28 \times \sqrt{28SJC} + 0.7 \times In ESR + 0.014 \times GH$, where 28TJC and 28SJC are the tender joint count and swollen

Figure 1. Serum resistin levels in RA patients and control subjects. Horizontal bars indicate median values. Statistical significance was determined by Mann-Whitney test.

There were no statistically significant differences in serum resistin levels between the RA patients [males: 3.3 (2.8-4.9) joint count from 28 joints and general health (GH) is the pang/mL, females: 3.5 (2.5-5.0) ng/mL] and normal controls tient's global assessment on a 100-mm visual analog scale [males: 3.7 (3.4-5.0) ng/mL, females: 3.6 (3.1-4.5) ng/mL] (VAS). (Fig. 1). However, the resistin levels of female RA patients This study was approved by the Ethical Committees of were broadly distributed. Therefore, we compared CRP levels between patients with resistin levels above the 75th percentile (>4.95 ng/mL) and those with resistin levels below the 75th percentile. We found that the CRP level of the former subgroup was significantly higher than that of the latter sent was obtained from both the patients and the normal subgroup (19.1±21.8 mg/L vs. 4.3±7.7 mg/L, p<0.001).

Toho University and Kitasato University. The RA patients and normal controls were recruited at Toho University Omori Hospital and the Research Center for Clinical Pharmacology of Kitasato University, respectively. Informed concontrols. In all subjects, a blood sample was collected in the mal controls.

parameters

The serum concentration of leptin was significantly (p< morning after an overnight fast. We did not provide any spe-0.001) higher in male RA patients [median 11.2 (interquarcial dietary management information to the patients or nortile range, 5.1-20.3) ng/mL] than in normal male control subjects [2.7 (1.8-4.3) ng/mL], and serum leptin level was also significantly (p<0.001) higher in female RA patients Measurement of adipokines and other laboratory [15.3 (7.3-26.7) ng/mL] than in normal female control subjects [7.4 (3.9-12.0) ng/mL] (Fig. 2). Serum leptin levels The serum concentrations of resistin, leptin, and adiwere significantly correlated with BMI in all subjects (p< ponectin were measured by enzyme-linked immunosorbent 0.001), except male RA patients (p=0.955), according to linassay (ELISA). Resistin and leptin ELISA kits were purear regression analysis. Since BMI is closely associated with chased from B-Bridge International, Inc. (Sunnyvale, CA, the serum leptin concentration (10, 11), leptin levels were USA), while the kit for adiponectin was obtained from adjusted by BMI. As a result, the leptin/BMI ratios of RA patients [males: 0.51 (0.21-0.95), females: 0.69 (0.35-1.15)] R&D Systems, Inc. (Minneapolis, MN, USA). Samples were prepared at the appropriate dilutions and paired samples were significantly (p<0.001) higher than those of normal were assayed together according to the instructions of the control subjects [males: 0.12 (0.10-0.17), females: 0.33 manufacturers. The intra- and inter-assay coefficients of (0.20 - 0.55)]. variation for resistin, leptin, and adiponectin were: <4% and Female RA patients had significantly (p<0.001) higher se-<7%, <8% and <10%, <5% and <7%, respectively. Rheumarum adiponectin concentrations [10.1 (4.5-26.8) µg/mL] than

toid factor was measured by nephelometry (Mitsubishi Kagaku Iatron, Tokyo, Japan). C-reactive protein (CRP) was also measured by nephelometry according to the manufacturer's specifications (Dade-Behring Inc., Deerfield, IL, USA). The erythrocyte sedimentation rate (ESR) was measured by the Westergren method.

Statistical analysis

Results are expressed as the mean and/or median. Statistical analysis was performed with StatFlex software (ver. 6; ARTEC Co., Ltd., Osaka, Japan). The significance of between-group differences in serum adipokine concentrations was determined by the Mann-Whitney non-parametric test, while differences of background data were evaluated by Student's t-test. Simple linear regression analysis was used to assess correlations between serum adipokine levels and patient characteristics, and stepwise forward multiple regression analysis was also performed. Logarithmic transformation was done for highly skewed variables (resistin, leptin, adiponectin, and CRP) when needed in order to satisfy the requirements of multivariate models. In all analyses, p<0.05 was considered to indicate statistical significance.

Results

Serum adipokine concentrations

Intern Med 50: 269-275, 2011 DOI: 10.2169/internalmedicine.50.4306

and Patient Characteristics

				Resistin*			
Characteristic	Univariate		Multivariate (complex)			Multivariate (simplified)	
	β	р	R ²	β	р	β	р
Female	0.031	0.352	0.006	0.068	0.061	0.070	0.027
Age	0.004	0.047	0.028	0.002	0.259		
BMI	0.015	0.041	0.030	0.008	0.287		
RA duration	-0.005	0.082	0.022	-0.006	0.077		
Stage	0.029	0.227	0.010	0.022	0.441		
CRP*	0.083	<u><0.001</u>	0.150	0.075	0.001	0.086	<u><0.001</u>
ESR	0.004	<u>0.001</u>	0.080	0.001	0.556		
DAS28-ESR	0.043	0.025	0.037	-0.016	0.474		
Prednisolone	0.049	0.080	0.022	0.026	0.369		
Methotrexate	-0.002	0.938	0.000	-0.011	0.699		
Other DMARDs	0.017	0.563	0.002	0.023	0.428		
Biological agents	0.031	0.355	0.006	-0.004	0.911		
R ²				0.163		0.173	

β: regression coefficient; DMARDs: disease modifying anti-rheumatic drugs; Other DMARDs: one or more of sulfasalazine, bucillamine, injectable gold, and/or auranofin; DAS: disease activity score; ESR: erythrocyte sedimentation rate; CRP: C-reactive protein; BMI: body mass index; R²: coefficient of determination

*Logarithmic transformation was done for highly skewed variables as needed to satisfy the requirements of multivariate models. Significant correlations (p<0.05) are underlined.

Table 4. Crude and Adjusted Associations of the Serum Leptin Concentration and Patient Characteristics

Characteristic	19. Hi 723	1 9.44 9.24	an share	Leptin*								
	Univa	Univariate		Multivariate (complex)		Multiv (simpl						
	β	р	R ²	β	р	β	р					
Female	0.037	0.746	0.001	0.150	0.223							
Age	0.008	0.258	0.009	0.004	0.516							
BMI	0.113	< 0.001	0.138	0.103	< 0.001	0.104	< 0.001					
RA duration	-0.005	0.621	0.002	-0.003	0.836							
Stage	0.130	0.111	0.018	0.079	0.411							
CRP*	0.216	< 0.001	0.087	0.185	<u>0.019</u>	0.187	0.001					
ESR	0.004	0.287	0.008	-0.008	0.111							
DAS28-ESR	0.149	0.022	0.038	0.111	0.153							
Prednisolone	0.176	0.064	0.025	0.005	0.959							
Methotrexate	0.067	0.502	0.003	-0.045	0.642							
Other DMARDs	-0.008	0.933	< 0.001	0.040	0.678							
Biological agents	0.149	0.186	0.013	0.090	0.500							
R ²				0.162		0.187						

β: regression coefficient; DMARDs: disease modifying anti-rheumatic drugs; Other DMARDs: one or more of sulfasalazine, bucillamine, injectable gold, and/or auranofin; DAS: disease activity score; ESR: erythrocyte sedimentation rate; CRP: C-reactive protein; BMI: body mass index; R²: coefficient of determination

*Logarithmic transformation was done for highly skewed variables as needed to satisfy the requirements of multivariate models. Significant correlations (p<0.05) are underlined.

ments (26-28). The present study did not investigate the resis. These data suggest that an increased serum level of relationship between the serum adipokine levels and dietary sistin may contribute to inflammation in RA patients. Howsupplements; no special dietary management was provided ever, the reason for the gender difference, in which the fefor the patients or normal controls. male sex was associated with high serum resistin levels, is Tarkowski et al (29) demonstrated that resistin competes unknown.

with lipopolysaccharide for binding to Toll-like receptor-4 Simons et al (30) described that TNF α and IL-1 β stimuand may act as a pro-inflammatory cytokine in human late leptin production by human preadipocytes. Some reports monocytes. In the present study, we found that the CRP have described a significant positive correlation between the level was higher in the subgroup of high serum resistin levserum leptin level and the disease activity of els than in the subgroup of low serum resistin levels. In ad-RA (14, 15, 21). We also found a significant correlation bedition, the CRP level was a significant predictor of the tween the serum leptin level and CRP by multivariate analyhigher serum resistin level according to multivariate analysis in this study.

Figure 2. Serum leptin levels in RA patients and control subjects. Horizontal bars indicate median values. Statistical significance was determined by Mann-Whitney test.

normal female control subjects [3.6 (2.4-7.4) µg/mL], but no significant difference of adiponectin levels was observed in males (RA males: median 2.6 µg/mL; control males: median 2.3 µg/mL, p=0.203) (Fig. 3).

Correlations between adipokines and patient characteristics

We included various patient characteristics [sex, age, BMI, duration of RA, stage, CRP, ESR, DAS28-ESR, prednisolone, methotrexate, other disease modifying antirheumatic drugs (DMARDs), and biological agents] in a model predicting the serum levels of adipokines (resistin, leptin, and adiponectin) (Table 3-5, respectively).

As shown in Table 3, significant univariate predictors of the serum level of resistin included age, BMI, CRP, ESR, and DAS28-ESR. Inclusion of these univariate predictors in a multivariate model resulted in the final selection of female sex and CRP as significant predictors (Table 3, multivariate model).

Significant univariate predictors of the leptin level included BMI, CRP, and DAS28-ESR (Table 4, univariate model), while multivariate analysis resulted in the final selection of BMI and CRP (Table 4, multivariate model).

For adiponectin, significant univariate predictors included female sex, BMI, RA stage, CRP, and current prednisolone use (Table 5, univariate model). On multivariate analysis, the significant predictors were reduced to CRP and current predtrol subjects. Horizontal bars indicate median values. Statistical significance was determined by Mann-Whitney test.

nisolone use (Table 5, multivariate model). In addition, a significant positive correlation was found between the serum adiponectin level and the dose of prednisolone in female RA patients by linear regression analysis (r=0.306, p<0.05). However, we did not find any significant correlation between serum adiponectin levels and the use of methotrexate and/or biological agents.

Discussion

We measured the serum levels of 3 adipokines (resistin, leptin, and adiponectin) in 141 RA patients and 146 normal controls. Most of the previous studies showed the serum levels of several adipokines in only around 50 patients (12-24). They indicated that the serum resistin (12, 13, 25), leptin (14-16, 23, 25) and adiponectin (14, 22-25) levels are higher in RA patients than in healthy controls, while negative results (14, 17-20, 24) were also reported. The present results showed significantly elevated serum levels of leptin and adiponectin, and a trend for an elevated serum resistin level in RA patients. In addition, we found that the serum levels of resistin, leptin and adiponectin in the same samples were all associated with CRP, and they were individually associated with the different clinical conditions of female sex, BMI, and prednisolone use, respectively.

Some previous reports described that the serum levels of these adipokines were associated with dietary supple-

Intern Med 50: 269-275, 2011 DOI: 10.2169/internalmedicine.50.4306

Table 3. Crude and Adjusted Associations of the Serum Resistin Concentration

Table 5. Crude and Adjusted Associations of the Serum Adiponectin Concentration and Patient Characteristics

			1	Adiponectin'	*							
Characteristic	Univariate		_	Multiva (compl		Multivariate (simplified)						
	β	р	R ²	β	р	β	р					
Female	0.654	<u><0.001</u>	0.152	7.676	0.370							
Age	0.011	0.191	0.012	0.891	0.065							
BMI	-0.068	0.034	0.032	-2.626	0.139							
RA duration	0.025	0.061	0.025	-0.538	0.515							
Stage	0.294	0.003	0.060	3.774	0.572							
CRP*	-0.175	0.024	0.037	-11.144	0.042	-10.453	0.010					
ESR	-0.106	0.678	0.001	-0.120	0.728							
DAS28-ESR	0.025	0.755	0.001	4.106	0.448							
Prednisolone	0.283	0.016	0.041	15.485	0.023	17.594	0.005					
Methotrexate	0.070	0.572	0.002	-0.428	0.949							
Other DMARDs	-0.061	0.629	0.000	-1.853	0.786							
Biological agents	0.095	0.499	0.003	0.427	0.963							
R ²				0.055		0.090						

β: regression coefficient; DMARDs: disease modifying anti-rheumatic drugs; Other DMARDs: one or more of sulfasalazine, bucillamine, injectable gold, and/or auranofin; DAS: disease activity score; ESR: erythrocyte sedimentation rate; CRP: C-reactive protein; BMI: body mass index; R²: coefficient of determination

*Logarithmic transformation was done for highly skewed variables as needed to satisfy the requirements of multivariate models. Significant correlations (p<0.05) are underlined.

Previous reports have shown that the serum leptin level is positively correlated with BMI, (10, 11) as observed in this study, except for male RA patients. We also found that leptin/BMI ratio of RA patients was significantly higher Maeda et al (33) reported the reciprocal suppression of adithan that of normal control subjects. Based on these results, the absence of correlation between the serum leptin level and BMI in male RA patients might be explained by the influence of inflammation. Moreover, it was suggested that leptin may act as a pro-inflammatory cytokine in this disease.

Rho et al (25) suggested that leptin was associated with reduced radiographic joint damage as estimated by the Larsen score (31). In the present study, leptin as well as other adipokines were not associated with the Steinbrocker stage of RA. In general, high disease activity in RA patient is correlated with joint damage. The relationship between the serum leptin level and radiographic joint damage should in the present study. The reason for the absence of correlabe studied in the future.

The serum adiponectin level was significantly higher in female RA patients than in normal female controls. We also found the same trend in male RA patients, although the difference was not statistically significant. However, the serum CRP level was negatively associated with the adiponectin level in RA patients. Schäffler et al (32) reported that adiponectin was increased in the synovial fluid of RA patients compared with osteoarthritis patients, but they found no statistically significant correlations between adiponectin and ESR or CRP in RA patients. Our previous in vitro studies (6, 7) have suggested that adiponectin might be a proinflammatory cytokine for rheumatoid synovial fibroblasts. The discrepancies in the adiponectin studies between in vitro pro-inflammatory effects and various facets in clinical inflammatory conditions in RA patients remain to be studied.

In the present study, the serum adiponectin level was sig-

nificantly correlated with current prednisolone use by multiple regression analysis, and was also significantly correlated with the dose of prednisolone by linear regression analysis. ponectin and TNFa production in adipose tissue. Corticosteroids inhibit the production of pro-inflammatory cytokines such as TNF α (34). Thus, the reduction of TNF α by prednisolone might be the cause of the increased serum adiponectin level in the present RA patients.

Laurberg et al (35) found that the plasma adiponectin level was increased by 13% in RA patients who received methotrexate treatment. Nishida et al (36) reported that serum adiponectin levels showed an increase during infliximab (TNF α inhibitor) therapy in RA patients. However, we did not find significant correlations between serum adiponectin levels and the use of methotrexate and/or biological agents tion between serum adiponectin levels and TNFa inhibitor therapy might be explained by the small number of patients receiving TNFa inhibitors, comparing with those receiving prednisolone.

In summary, the serum levels of resistin and leptin were positively associated with CRP level in patients with rheumatoid arthritis, suggesting that these adipokines may act as pro-inflammatory cytokines in this disease. The serum adiponectin level was elevated in the patients, however, it was negatively associated with CRP level. In addition, the serum levels of resistin, leptin, and adiponectin were also associated with female sex, BMI and the use of prednisolone, respectively.

The authors state that they have no Conflict of Interest (COI).

Acknowledgement

This work was partly supported by a research grant from the Japanese Ministry of Education, Culture, Sports, Science & Technology (JSPS 20591177), and by a Research Promotion Grant from Toho University Graduate School of Medicine (No. 07-04) to S.K. We wish to thank Ms. Sonoko Sakurai for secretarial assistance.

References

- 1. Smolen JS, Aletaha D, Koeller M, Weisman MH, Emery P, New therapies for treatment of rheumatoid arthritis. Lancet 370: 1861-1874, 2007.
- 23. Härle P, Sarzi-Puttini P, Cutolo M, Straub RH. No change of serum levels of leptin and adiponectin during anti-tumour necrosis 2. Firestein GS. Evolving concepts of rheumatoid arthritis. Nature 423: 356-361, 2003. factor antibody treatment with adalimumab in patients with rheu-3. Arend WP. Physiology of cytokine pathways in rheumatoid arthrimatoid arthritis. Ann Rheum Dis 65: 970-971, 2006.
- tis. Arthritis Rheum 45: 101-106, 2001.
- 24. Popa C, Netea MG, de Graaf J, et al. Circulating leptin and adi-4. Tilg H, Moschen AR. Adipocytokines: mediators linking adipose ponectin concentrations during tumor necrosis factor blockade in patients with active rheumatoid arthritis. J Rheumatol 36: 724tissue, inflammation and immunity. Nat Rev Immunol 6: 772-783, 730, 2009 2006
- 5. Koerner A, Kratzsch J, Kiess W. Adipocytokines: leptin--the classical, resistin--the controversial, adiponectin--the promising, and more to come. Best Pract Res Clin Endocrinol Metab 19: 525-546, 2005.
- 6. Kitahara K, Kusunoki N, Kakiuchi T, Suguro T, Kawai S, Adiponectin stimulates IL-8 production by rheumatoid synovial fibroblasts. Biochem Biophys Res Commun 378: 218-223, 2009.
- 27. Zhao WS, Zhai JJ, Wang YH, et al. Conjugated linoleic acid supplementation enhances antihypertensive effect of ramipril in Chi-7. Kusunoki N, Kitahara K, Kojima F, et al. Adiponectin stimulates nese patients with obesity-related hypertension. Am J Hypertens prostaglandin E₂ production in rheumatoid synovial fibroblasts. 22: 680-686, 2009. Arthritis Rheum 62: 1641-1649, 2010.
- 8. Arnett FC, Edworthy SM, Bloch DA, et al. The American Rheu-28. Nelson TL, Stevens JR, Hickey MS. Adiponectin levels are reduced, independent of polymorphisms in the adiponectin gene, afmatism Association 1987 revised criteria for the classification of ter supplementation with alpha-linolenic acid among healthy rheumatoid arthritis. Arthritis Rheum 31: 315-324, 1988. 9. Fransen J. van Riel PL. The Disease Activity Score and the adults. Metabolism 56: 1209-1215, 2007.
- EULAR response criteria. Clin Exp Rheumatol 23: S93-S99, 2005
- 10. Maffei M, Halaas J, Ravussin E, et al. Leptin levels in human and rodent: measurement of plasma leptin and *ob* RNA in obese and weight-reduced subjects. Nat Med 1: 1155-1161, 1995.
- 11. Considine RV, Sinha MK, Heiman ML, et al. Serum immunoreactive leptin concentrations in normal-weight and obese humans. N Engl J Med 334: 292-295, 1996.
- 12. Migita K, Maeda Y, Miyashita T, et al. The serum levels of re-**31.** Larsen A, Dale K, Eek M. Radiographic evaluation of rheumatoid sistin in rheumatoid arthritis patients. Clin Exp Rheumatol 24: arthritis and related conditions by standard reference films. Acta 698-701, 2006. Radiol Diagn (Stockh) 18: 481-491, 1977.
- 13. Šenolt L, Housa D, Vernerová Z, et al. Resistin in rheumatoid ar-32. Schäffler A, Ehling A, Neumann E, et al. Adipocytokines in synovial fluid. JAMA 290: 1709-1710, 2003. thritis synovial tissue, synovial fluid and serum. Ann Rheum Dis 66: 458-463, 2007. 33. Maeda N, Shimomura I, Kishida K, et al. Diet-induced insulin re-
- 14. Otero M, Lago R, Gomez R, et al. Changes in plasma levels of fat-derived hormones adiponectin, leptin, resistin and visfatin in patients with rheumatoid arthritis. Ann Rheum Dis 65: 1198-1201, 2006
- 15. Targońska-Stepniak B, Majdan M, Dryglewska M. Leptin serum levels in rheumatoid arthritis patients: relation to disease duration and activity. Rheumatol Int 28: 585-591, 2008.
- 35. Laurberg TB, Frystyk J, Ellingsen T, et al. Plasma adiponectin in patients with active, early, and chronic rheumatoid arthritis who are steroid- and disease-modifying antirheumatic drug-naïve com-16. Gunaydin R, Kaya T, Atay A, Olmez N, Hur A, Koseoglu M. Separed with patients with osteoarthritis and controls. J Rheumatol rum leptin levels in rheumatoid arthritis and relationship with disease activity. South Med J 99: 1078-1083, 2006. 36: 1885-1891, 2009.
- 17. Hizmetli S, Kisa M, Gokalp N, Bakici MZ. Are plasma and 36. Nishida K, Okada Y, Nawata M, Saito K, Tanaka Y. Induction of synovial fluid leptin levels correlated with disease activity in rheuhyperadiponectinemia following long-term treatment of patients with rheumatoid arthritis with infliximab (IFX), an anti-TNF-alpha matoid arthritis? Rheumatol Int 27: 335-338, 2007. 18. Anders HJ, Rihl M, Heufelder A, Loch O, Schattenkirchner M. antibody. Endocr J 55: 213-216, 2008.
- Leptin serum levels are not correlated with disease activity in pa-

© 2011 The Japanese Society of Internal Medicine http://www.naika.or.jp/imindex.html

274

Intern Med 50: 269-275, 2011 DOI: 10.2169/internalmedicine.50.4306

tients with rheumatoid arthritis. Metabolism 48: 745-748, 1999.

- 19. Wisłowska M, Rok M, Jaszczyk B, Stepień K, Cicha M. Serum leptin in rheumatoid arthritis. Rheumatol Int 27: 947-954, 2007.
- 20. Popa C, Netea MG, Radstake TR, van Riel PL, Barrera P, van der Meer JW. Markers of inflammation are negatively correlated with serum leptin in rheumatoid arthritis. Ann Rheum Dis 64: 1195-1198, 2005.
- 21. Lee SW, Park MC, Park YB, Lee SK. Measurement of the serum leptin level could assist disease activity monitoring in rheumatoid arthritis, Rheumatol Int 27: 537-540, 2007.
- 22. Šenolt L, Pavelka K, Housa D, Haluzík M. Increased adiponectin is negatively linked to the local inflammatory process in patients with rheumatoid arthritis. Cytokine 35: 247-252, 2006.

- 25. Rho YH, Solus J, Sokka T, et al. Adipocytokines are associated with radiographic joint damage in rheumatoid arthritis. Arthritis Rheum 60: 1906-1914, 2009.
- 26. Aggarwal BB. Targeting inflammation-induced obesity and metabolic diseases by curcumin and other nutraceuticals. Annu Rev Nutr 30: 173-199, 2010.

- 29. Tarkowski A, Bjersing J, Shestakov A, Bokarewa MI. Resistin competes with lipopolysaccharide for binding to Toll-like receptor 4. J Cell Mol Med 14: 1419-1431, 2010.
- 30. Simons PJ, van den Pangaart PS, van Roomen CP, Aerts JM, Boon L. Cytokine-mediated modulation of leptin and adiponectin secretion during in vitro adipogenesis: evidence that tumor necrosis factor-alpha- and interleukin-1beta-treated human preadipocytes are potent leptin producers. Cytokine 32: 94-103. 2005.
- sistance in mice lacking adiponectin/ACRP30. Nat Med 8: 731-737, 2002.
- 34. Smoak K, Cidlowski JA. Glucocorticoids regulate tristetraproline synthesis and posttranscriptionally regulate tumor necrosis factor alpha inflammatory signaling. Mol Cell Biol 26: 9126-9135, 2006.